
For

Audit Report,
March, 2024

01www.quillaudits.com

NFTFN smart contract - Audit Report

10High Severity Issues

11High Severity Issues

13Medium Severity Issues

11

10A. Contract - NFTFN.sol

B. Contract - PreSale.sol

10A.1 Restrictive Token Burning Functionality

11B.2 Lack of ETH Refund Calculation in refundTokenAllocation Function

13

15

16

18

19

B.3 Flawed Accounting in refundTokenAllocation Function

B.4 Unverified Oracle Price Freshness in getLatestPrice

B.5 Unauthorized Refunds using the refundTokenAllocation

B.7 Owner can renounce using renounceOwnership function

B.6 Unauthorized Withdrawals by Owner Before Presale Ends

Table of Content

….. 03Executive Summary

......…... 05Number of Security Issues per Severity

... 06Checked Vulnerabilities

... 08Techniques and Methods

.. 09Types of Severity

......….. 09Types of Issues

https://www.quillaudits.com/smart-contract-audit

02www.quillaudits.com

NFTFN smart contract - Audit Report

Table of Content

......…... 22Automated Tests

......….. 21Functional Tests

.........…... 22Closing Summary

.................................…………….. 22Disclaimer

20B.8 Typographical Error in Function Name

20Informational Issues

20Low Severity Issues

03www.quillaudits.com

NFTFN smart contract - Audit Report

Project Name NFTFN

Overview NFTFN is a web3 fintech company focused on creating financial
products leveraging NFTs.

The goal of NFTFN is to create a suite of products around NFTs and
solving the liquidity challenge around this new emerging market.

Project URL https://www.nftfn.xyz

Contracts in Scope Contracts:-
1] Presale contract: A simple Presale Contract is meant to sell
tokens in stages where the amount of token allocated and the USD
rate are determined before starting the stage and remain constant

2]Token Contract: Standard ERC20 token with an admin based
mechanism for minting and burning tokens

Audit Scope https://sepolia.etherscan.io/
address/0x825181Cc677D66B581311a5a0e3b3101C9456189#code

https://sepolia.etherscan.io/
address/0x81a7cd9e8ff668f016f682410afe7885daa89b30#code

Commit Hash NA

Language Solidity

Blockchain Ethereum

Method Manual Review, Automated tools,Functional testing

Review 1 27th Feb 2024 - 5th Mar 2024

Executive Summary

https://www.quillaudits.com/smart-contract-audit
https://sepolia.etherscan.io/address/0x825181Cc677D66B581311a5a0e3b3101C9456189#code
https://sepolia.etherscan.io/address/0x825181Cc677D66B581311a5a0e3b3101C9456189#code
https://sepolia.etherscan.io/address/0x81a7cd9e8ff668f016f682410afe7885daa89b30#code
https://sepolia.etherscan.io/address/0x81a7cd9e8ff668f016f682410afe7885daa89b30#code

04www.quillaudits.com

NFTFN smart contract - Audit Report

Executive Summary

Updated Code Received 6th Mar 2024

Review 2 6th March 2024 - 7th March 2024

Fixed In Zip File Shared by NFTFN Team

https://drive.google.com/drive/
folders/1jagoj0w8MifZaSBLA5QNWulELR_zNziZ?usp=share_link

https://www.quillaudits.com/smart-contract-audit

05www.quillaudits.com

NFTFN smart contract - Audit Report

0

0

0

1

0

0

00

00

0

0 1

0

0

42

Open Issues

Acknowledged Issues

Partially Resolved Issues

Resolved Issues

High Medium Low Informational

High

Low

Medium

Informational
Issues Found

11

Number of Issues per Severity

https://www.quillaudits.com/smart-contract-audit

06www.quillaudits.com

NFTFN smart contract - Audit Report

Checked Vulnerabilities

Access Management

Arbitrary write to storage

Centralization of control

Ether theft

Improper or missing events

Logical issues and flaws

Arithmetic Correctness

Race conditions/front running

SWC Registry

Re-entrancy

Timestamp Dependence

Gas Limit and Loops

Exception Disorder

Gasless Send

Use of tx.origin

Malicious libraries

Compiler version not fixed

Address hardcoded

Divide before multiply

Integer overflow/underflow

ERC’s conformance

Dangerous strict equalities

Tautology or contradiction

Return values of low-level calls

Missing Zero Address Validation

Private modifier

Revert/require functions

Multiple Sends

Using suicide

Using delegatecall

Upgradeable safety

Using throw

https://www.quillaudits.com/smart-contract-audit

07www.quillaudits.com

NFTFN smart contract - Audit Report

Checked Vulnerabilities

Using inline assembly

Style guide violation

Unsafe type inference

Implicit visibility level

08www.quillaudits.com

NFTFN smart contract - Audit Report

Throughout the audit of smart contracts, care was taken to ensure:

The overall quality of code.
Use of best practices.
Code documentation and comments, match logic and expected behavior.
Token distribution and calculations are as per the intended behavior mentioned in the
whitepaper.
Implementation of ERC standards.
Efficient use of gas.
Code is safe from re-entrancy and other vulnerabilities.

The following techniques, methods, and tools were used to review all the smart contracts.

In this step, we have analyzed the design patterns and structure of smart contracts. A
thorough check was done to ensure the smart contract is structured in a way that will not
result in future problems.

Structural Analysis

A static Analysis of Smart Contracts was done to identify contract vulnerabilities. In this
step, a series of automated tools are used to test the security of smart contracts.

Static Analysis

Manual Analysis or review of code was done to identify new vulnerabilities or verify the
vulnerabilities found during the static analysis. Contracts were completely manually
analyzed, their logic was checked and compared with the one described in the
whitepaper. Besides, the results of the automated analysis were manually verified.

Code Review / Manual Analysis

In this step, we have checked the behavior of smart contracts in production. Checks were
done to know how much gas gets consumed and the possibilities of optimization of code
to reduce gas consumption.

Gas Consumption

Remix IDE, Truffle,Solhint, Mythril, Slither, Solidity static analysis.
Tools and Platforms used for Audit

Techniques and Methods

https://www.quillaudits.com/smart-contract-audit

09www.quillaudits.com

NFTFN smart contract - Audit Report

Every issue in this report has been assigned to a severity level. There are four levels of
severity, and each of them has been explained below.

Types of Severity

A high severity issue or vulnerability means that your smart contract can be exploited.
Issues on this level are critical to the smart contract’s performance or functionality, and
we recommend these issues be fixed before moving to a live environment.

High Severity Issues

The issues marked as medium severity usually arise because of errors and deficiencies in
the smart contract code. Issues on this level could potentially bring problems, and they
should still be fixed.

Medium Severity Issues

Low-level severity issues can cause minor impact and are just warnings that can remain
unfixed for now. It would be better to fix these issues at some point in the future.

Low Severity Issues

These are four severity issues that indicate an improvement request, a general question,
a cosmetic or documentation error, or a request for information. There is low-to-no
impact.

Informational

Types of Issues

Security vulnerabilities identified that must be resolved and are currently unresolved.
Open

These are the issues identified in the initial audit and have been successfully fixed.
Resolved

Vulnerabilities which have been acknowledged but are yet to be resolved.
Acknowledged

Considerable efforts have been invested to reduce the risk/impact of the security issue,
but are not completely resolved.

Partially Resolved

https://www.quillaudits.com/smart-contract-audit

10www.quillaudits.com

NFTFN smart contract - Audit Report

A.1 Restrictive Token Burning Functionality

Description

Remediation

Reassess the requirement that only admins can burn tokens, and consider allowing users
to burn their own tokens. This empowers token holders with greater control over their
assets and can enable dynamic token economics.

The current implementation of the burn function within the smart contract restricts the
ability to burn tokens unnecessarily by enforcing that only the admin can initiate a token
burn, and exclusively for their own tokens. This restriction is imposed by the combination
of the onlyAdmin modifier and a conditional check ensuring the from address matches the
msg.sender. This design not only limits the utility and flexibility of the token burn
mechanism but also potentially hampers token economics management and user
engagement strategies.

Status
Resolved

Line Function - burn
57-63 function burn(address from, uint256 amount) public onlyAdmin {

 if (from != msg.sender) {
 revert InvalidAddress();
 }

 _burn(from, amount);
 }

High Severity Issues

A. Contract - NFTFN.sol

https://www.quillaudits.com/smart-contract-audit

11www.quillaudits.com

NFTFN smart contract - Audit Report

B.2 Lack of ETH Refund Calculation in refundTokenAllocation Function

Line Function - refundTokenAllocation
389-419 function refundTokenAllocation(address user, address token) public {

/// Check that Soft Limit has not been reached
if (totalUsdRaised >= usdSoftLimit) revert SoftLimitHit();

/// Revert If Token is Invalid
if (!acceptedTokens[token]) revert InvalidToken();

/// Revert if the stage has not been active for 30 days or the stage has no
start time i.e. it was never started

if (presaleParamsData[currentStage].startTime == 0 ||
presaleParamsData[currentStage].startTime + (30 * 86400) > block.timestamp

) revert RefundNotActive(); // if not able to achieve target in 30 days,
then refund.

UserData storage userData = userDeposits[user];

uint256 usdInvested = userData.usdInvested;

/// Check that the user has an allocation that he is asking a refund for
if (usdInvested == uint256(0)) revert InvalidBalance();

/// If the amount need to refund is greated than the amount currently
held in the stage

/// Remove his invested and tokens allocated
totalUsdRaised -= usdInvested;
presaleParamsData[currentStage].usdRaised -= usdInvested; // @audit

why we are dedudting the overall amount of an user from current stage.
presaleParamsData[currentStage].tokensAllocated +=

userData.tokensAllocated;

High Severity Issues

B. Contract - PreSale.sol

12www.quillaudits.com

NFTFN smart contract - Audit Report

Status
Resolved (Intended functionality)

userData.tokensAllocated = 0;
userData.usdInvested = 0;

IERC20Metadata(token).safeTransfer(user, usdInvested);

emit RefundClaimed(user, block.timestamp);
 }

Description

Remediation

Implement ETH Refund Logic: Modify the refundTokenAllocation function to include
logic that calculates and processes refunds in ETH for users who contributed in ETH. This
involves tracking the payment method (ETH or ERC-20 token) at the time of investment
and the corresponding USD value of the ETH contributed, considering the ETH/USD
exchange rate at the time of purchase.

The refundTokenAllocation function in the presale contract allows users to refund their
token allocations if certain conditions are met, such as the soft limit not being reached
within a specified timeframe. While the function supports refunds for token purchases
made with accepted ERC-20 tokens (e.g., USDT), it lacks the mechanism to calculate and
process refunds for purchases made with ETH. This oversight can lead to a scenario where
users who participated in the presale using ETH cannot receive their refunds in ETH,
thereby affecting the fairness and integrity of the presale contract.

13www.quillaudits.com

NFTFN smart contract - Audit Report

B.3 Flawed Accounting in refundTokenAllocation Function

Line Functions - refundTokenAllocation
389 - 419 function refundTokenAllocation(address user, address token) public {

 /// Check that Soft Limit has not been reached
 if (totalUsdRaised >= usdSoftLimit) revert SoftLimitHit();

 /// Revert If Token is Invalid
 if (!acceptedTokens[token]) revert InvalidToken();

 /// Revert if the stage has not been active for 30 days or the stage has no
start time i.e. it was never started
 if (presaleParamsData[currentStage].startTime == 0 ||
presaleParamsData[currentStage].startTime + (30 * 86400) > block.timestamp
) revert RefundNotActive(); // if not able to achieve target in 30 days,
then refund.

 UserData storage userData = userDeposits[user];

 uint256 usdInvested = userData.usdInvested;

 /// Check that the user has an allocation that he is asking a refund for
 if (usdInvested == uint256(0)) revert InvalidBalance();

 /// If the amount need to refund is greated than the amount currently
held in the stage

 /// Remove his invested and tokens allocated
 totalUsdRaised -= usdInvested;
 presaleParamsData[currentStage].usdRaised -= usdInvested; // @audit
why we are dedudting the overall amount of an user from current stage.
 presaleParamsData[currentStage].tokensAllocated +=
userData.tokensAllocated;
 userData.tokensAllocated = 0;
 userData.usdInvested = 0;

 IERC20Metadata(token).safeTransfer(user, usdInvested);

 emit RefundClaimed(user, block.timestamp);
 }

Medium Severity Issues

14www.quillaudits.com

NFTFN smart contract - Audit Report

Status
Resolved

Description

Remediation

1.

1.

2.

The refundTokenAllocation function in the presale contract is designed to handle refunds
for users under certain conditions. However, there is an accounting flaw in how refunds
are processed, particularly in how the total USD invested by a user is subtracted from the
USD raised in the current presale stage. The function deducts the user's total investment
from presaleParamsData[currentStage].usdRaised, without considering that the user's
total investment might span multiple stages of the presale. This approach can lead to
inaccurate accounting of funds raised in the current stage, potentially affecting the
operation and fairness of the presale process

Stage-wise Investment Tracking: Enhance the data structure to track user investments
stage-wise rather than aggregating them into a single total. This will allow for precise
adjustments to the funds raised per stage during refunds.

Adjust Refund Logic: Update the refundTokenAllocation function to correctly account for
the stage-specific investment of the user. Deduct the refund amount from the stage in
which the funds were actually raised.

15www.quillaudits.com

NFTFN smart contract - Audit Report

B.4 Unverified Oracle Price Freshness in getLatestPrice

Description
The function getLatestPrice fetches the latest price from an oracle but does not check
whether the price is stale. While the function does convert negative responses into a
revert condition indicating an invalid price feed value, it lacks validation to ensure that the
price data is recent. In the context of blockchain applications, especially those involving
financial transactions, relying on outdated price information can lead to incorrect
valuations, exploitation, and potentially significant financial losses.

Status
Resolved

Line Function - getLatestPrice
493-498 function getLatestPrice() public view returns (uint256) {

 /// This gives answer in 8 decimals
 (, int256 answer,,,) = ethDataFeed.latestRoundData();
 if (answer < 0) revert InvalidPriceFeedValue();
 return uint256(answer * (10 ** 10)); // Conversion to 18 decimals
 }

Remediation

1.

2.

Timestamp Verification: Modify the getLatestPrice function to include a check for the
timestamp of the latest round data. The oracle typically provides this timestamp, which
should be compared against the current block timestamp to ensure the data is within an
acceptable freshness threshold.

Define Acceptable Delay: Establish a constant or configurable parameter within the
contract that defines the maximum acceptable delay (in seconds) for price data. This
parameter allows the contract to reject oracle data that is older than this threshold,
mitigating the risk of using stale information.

16www.quillaudits.com

NFTFN smart contract - Audit Report

B.5 Unauthorized Refunds using the refundTokenAllocation

Line Functions - refundTokenAllocation
389 - 419 function refundTokenAllocation(address user, address token) public {

/// Check that Soft Limit has not been reached
if (totalUsdRaised >= usdSoftLimit) revert SoftLimitHit();

/// Revert If Token is Invalid
if (!acceptedTokens[token]) revert InvalidToken();

/// Revert if the stage has not been active for 30 days or the stage has no
start time i.e. it was never started

if (presaleParamsData[currentStage].startTime == 0 ||
presaleParamsData[currentStage].startTime + (30 * 86400) > block.timestamp

) revert RefundNotActive(); // if not able to achieve target in 30 days,
then refund.

UserData storage userData = userDeposits[user];

uint256 usdInvested = userData.usdInvested;

/// Check that the user has an allocation that he is asking a refund for
if (usdInvested == uint256(0)) revert InvalidBalance();

/// If the amount need to refund is greated than the amount currently
held in the stage

/// Remove his invested and tokens allocated
totalUsdRaised -= usdInvested;
presaleParamsData[currentStage].usdRaised -= usdInvested; // @audit

why we are dedudting the overall amount of an user from current stage.
presaleParamsData[currentStage].tokensAllocated +=

userData.tokensAllocated;
userData.tokensAllocated = 0;
userData.usdInvested = 0;

IERC20Metadata(token).safeTransfer(user, usdInvested);

emit RefundClaimed(user, block.timestamp);
 }

17www.quillaudits.com

NFTFN smart contract - Audit Report

Status
Resolved

Description

Remediation

Authentication Requirement: Modify the refundTokenAllocation function to require that
the caller is either the user requesting the refund or an authorized admin. This can be
achieved through a modifier that checks the caller's address against the intended refund
recipient or a list of authorized accounts.

The refundTokenAllocation function within the contract permits any caller to initiate a
refund for any user without requiring explicit authorization from the user whose funds are
being refunded. This functionality poses a significant security risk, as it enables potential
attackers or unauthorized parties to drain funds from the presale stages by triggering
refunds on behalf of legitimate users without their consent. This flaw undermines the
integrity of the fundraising process and the security of participant funds.

18www.quillaudits.com

NFTFN smart contract - Audit Report

B.6 Unauthorized Withdrawals by Owner Before Presale Ends

Description

Remediation

Implement NFTFN token check: Amend the forwardFunds function to include a
condition that checks whether the token address is NFTFN token and if it voilates the
condition the function should revert.

The forwardFunds function in the smart contract allows the contract owner to transfer
tokens to a specified treasury wallet without any restriction on the presale's status. This
means the owner can withdraw funds (including tokens collected during the presale) at
any time, even before the presale concludes. Such functionality undermines the trust of
participants in the presale's integrity and security, potentially enabling premature or
unauthorized access to the funds raised, contrary to the expected lock-in period or
conditions communicated to presale participants.

Status
Resolved

Line Function - forwardFunds
424-427 function forwardFunds(address token, uint256 value) public onlyOwner {

 IERC20Metadata(token).safeTransfer(treasuryWallet, value);
 emit FundsTransferred(token, value);
 }

Low Severity Issues
No issues were found.

19www.quillaudits.com

NFTFN smart contract - Audit Report

B.7 Owner can renounce using renounceOwnership function

Description

Remediation
It is recommended that the Owner is not able to call renounceOwnership without
transferring the Ownership to another address before. In addition, if a multi-signature
wallet is used, calling renounceOwnership function should be confirmed for two or more
users. As another solution, Renounce Ownership functionality can be disabled.

The Owner of the contract is usually the account that deploys the contract. As a result, the
Owner is able to perform some privileged functions like initPresale(),
initNextPresaleStage(), endPreSale(), forwardFunds() and forwardFundsEth() etc. In the
PreSale.sol smart contract, the renounceOwnership function is used to renounce the
Owner permission. Renouncing ownership before transferring would result in the contract
having no Owner, eliminating the ability to call privileged functions.

Status
Acknowledged

Line Function - PreSale Contract
9 import { Ownable } from "../../lib/openzeppelin-contracts/contracts/access/

Ownable.sol";

20www.quillaudits.com

NFTFN smart contract - Audit Report

Informational Issues

B.8 Typographical Error in Function Name

Description

Remediation
Rename the function to getClaimableTokens to correct the typographical error and
improve code readability.

The function getClaimiableTokens contains a typographical error in its name (Claimiable
instead of Claimable).

Status
Resolved

Line Function - getClaimiableTokens
370 getClaimiableTokens()

Low Severity Issues
No issues were found.

21www.quillaudits.com

NFTFN smart contract - Audit Report

Functional Tests

Some of the tests performed are mentioned below:

Should initiate the contract with provided USDC address

 Should initiate the contract with provided WhitelistManager address

Should initiate the contract with provided owner address

Should Set the contract Variables by Owner

Should not Set the contract Variables by other than Pool Manager

Should not deposit if not whitelisted

Should add Whitelist

Should deposit if whitelisted

Should deposit with locking duration

Should check Base APR

Should check Active Deposits

Should withdraw the funds related to deposit ID EMERGENCY

Should withdraw by ID but Restriction of Time

Should withdraw all funds

Should transfer funds to another account

Should Set the contract Variables by Owner

Should not Set the contract Variables by other than Pool Manager

Should not deposit if not whitelisted

Should revert withdraw if deposit ID is invalid

Should revert withdraw if locking duration is not over

Should revert deposit if token address is invalid or user not whitelisted

Should revert deposit if locking duration if user not whitelisted or amount 0

Should set contract variables by owner

22www.quillaudits.com

NFTFN smart contract - Audit Report

Closing Summary
In this report, we have considered the security of the NFTFN Project. We performed our audit
according to the procedure described above.

Some issues of High, Medium, Low and informational severity were found, Some suggestions and
best practices are also provided in order to improve the code quality and security posture.

Disclaimer
QuillAudits Smart contract security audit provides services to help identify and mitigate potential
security risks in NFTFN PreSale smart contracts. However, it is important to understand that no
security audit can guarantee complete protection against all possible security threats. QuillAudits
audit reports are based on the information provided to us at the time of the audit, and we cannot
guarantee the accuracy or completeness of this information. Additionally, the security landscape
is constantly evolving, and new security threats may emerge after the audit has been completed.

Therefore, it is recommended that multiple audits and bug bounty programs be conducted to
ensure the ongoing security of NFTFN PreSale smart contracts. One audit is not enough to
guarantee complete protection against all possible security threats. It is important to implement
proper risk management strategies and stay vigilant in monitoring your smart contracts for
potential security risks.

QuillAudits cannot be held liable for any security breaches or losses that may occur subsequent
to and despite using our audit services.. It is the responsibility of the NFTFN PreSale to
implement the recommendations provided in our audit reports and to take appropriate steps to
mitigate potential security risks.

Automated Tests
No major issues were found. Some false positive errors were reported by the tools. All the other
issues have been categorized above according to their level of severity.

www.quillaudits.com

NFTFN smart contract - Audit Report

Follow Our Journey

1M+
Lines of Code Audited

$30B
Secured

1000+
Audits Completed

About QuillAudits
QuillAudits is a secure smart contracts audit platform designed by QuillHash Technologies. We
are a team of dedicated blockchain security experts and smart contract auditors determined to
ensure that Smart Contract-based Web3 projects can avail the latest and best security solutions

to operate in a trustworthy and risk-free ecosystem.

https://www.quillaudits.com/smart-contract-audit
https://twitter.com/Quillaudits
https://www.linkedin.com/company/quillaudits/
https://t.me/QuillAudits
https://www.reddit.com/r/QuillAudits/
https://quillaudits.medium.com/
https://discord.gg/jJfN9UD4YX
https://www.youtube.com/channel/UC5Yt_8qEaAr-PiTMmGBuPCQ/videos

Canada, India, Singapore, UAE, UK

www.quillaudits.com

audits@quillhash.com

For

Audit Report
March, 2024

https://www.quillaudits.com/smart-contract-audit
mailto:audits@quillhash.com

